汤贤哲

审核发布:9999js金沙老品牌来源单位及审核人:发布时间:2023-03-21浏览次数:2080

性别:男 职称:副教授/硕士生导师 Email:xztang@scau.edu.cn 办公电话:020-85288307 办公地址:数信楼239室

教育背景

2019-102021-9, 日本大阪大学, 環境エネルギー工学専攻, 博士
2016-9
2019-7, 华南师范大学, 地图学与地理信息系统, 硕士
2012-9
2016-7, 安徽农业大学, 地理信息科学, 学士


工作履历

2021-11至今, 学院, 9999js金沙老品牌地理信息系, 副教授


学术兼职

国际期刊Environmental Research letters, Catena, Journal of Hydrology, Science of the Total Environment, Geoscience Frontiers, Water Resources Management, Geocarto International等审稿人

日本地理情報システム学会,日本農業気象学会会员


研究领域

城市内涝易发性评估;森林火灾易发性评估;农业面源污染负荷估算


奖励和荣誉

2020年,2021年获大阪大学工学院博士生奖学金,院级
2020
年获国家优秀自费留学生奖学金,国家级


主持项目

1. 国家自然科学基金-青年项目:粤港澳大湾区城市内涝易发性时空建模与精准评估研究,2024/01-2026/1230万元,在研,主持。

2. 广东省自然科学基金-青年项目:基于社交媒体数据的城市内涝风险时空评估模式研究,2023/01-2025/1210万元,在研,主持

3. 广州市基础研究计划基础与应用基础研究项目:广州城市地表热环境下的内涝热点区挖掘研究,2023/04-2025/035万元,在研,主持

4. 学院高层次人才引进青年才俊项目,2021/11-2026/1040万元,在研,主持


学术成果

一、发表论文:

近五年,以第一或通讯作者身份,在地理信息与自然灾害相关SCI期刊共发表论文10篇,包括中科院一区期刊8篇。


第一作者(9篇):

Tang, X., Wu, Z., Liu, W., Tian, J., & Liu, L. (2023). Exploring effective ways to increase reliable positive samples for machine learning-based urban waterlogging susceptibility assessments. Journal of Environmental Management, 344, 118682.

Tang, X., Machimura, T., Li, J., Yu, H., & Liu, W. (2022). Evaluating Seasonal Wildfire Susceptibility and Wildfire Threats to Local Ecosystems in the Largest Forested Area of China. Earth's Future, e2021EF002199.

Tang, X., Machimura, T., Liu, W., Li, J., & Hong, H. (2021). A novel index to evaluate discretization methods: A case study of flood susceptibility assessment based on random forest. Geoscience Frontiers, 12(6), 101253.

Tang, X., Li, J., Liu, W., Yu, H., & Wang, F. (2021). A method to increase the number of positive samples for machine learning-based urban waterlogging susceptibility assessments. Stochastic Environmental Research and Risk Assessment, 1-18.

Tang, X., Shu, Y., Liu, W., Li, J., Liu, M., & Yu, H. (2021). An optimized weighted Naïve Bayes method for flood risk assessment. Risk analysis, 41(12), 2301-2321.

Tang, X., Machimura, T., Li, J., Liu, W., & Hong, H. (2020). A novel optimized repeatedly random undersampling for selecting negative samples: A case study in an SVM-based forest fire susceptibility assessment. Journal of Environmental Management, 271, 111014.

Tang, X., Li, J., Liu, M., Liu, W., & Hong, H. (2020). Flood susceptibility assessment based on a novel random Naïve Bayes method: A comparison between different factor discretization methods. Catena, 190, 104536.

Tang, X., Hong, H., Shu, Y., Tang, H., Li, J., & Liu, W. (2019). Urban waterlogging susceptibility assessment based on a PSO-SVM method using a novel repeatedly random sampling idea to select negative samples. Journal of Hydrology, 576, 583-595.

Tang, X., Shu, Y., Lian, Y., Zhao, Y., & Fu, Y. (2018). A spatial assessment of urban waterlogging risk based on a Weighted Naïve Bayes classifier. Science of the total environment, 630, 264-274.


通讯作者(1篇):

Xian, W., Liu, H., Yang, X., Huang, X., Huang, H., Li, Y., ... & Tang, X.* (2023). An ensemble framework for farmland quality evaluation based on machine learning and physical models. Science of The Total Environment, 168914.


管理登录 备案编号:粤ICP备05008874号
Baidu
sogou